首頁人工智能常見問題正文

人工智能與機器學(xué)習(xí)的區(qū)別是什么?

更新時間:2023-05-03 來源:黑馬程序員 瀏覽量:

IT培訓(xùn)班

  人工智能(Artificial Intelligence,簡稱AI)是一門廣泛的學(xué)科,致力于使計算機系統(tǒng)能夠模仿、理解和執(zhí)行人類智能任務(wù)。機器學(xué)習(xí)(Machine Learning)是人工智能的一個子領(lǐng)域,關(guān)注如何通過數(shù)據(jù)和統(tǒng)計模型使計算機系統(tǒng)自動學(xué)習(xí)和改進。

  人工智能是一個更為寬泛的概念,涵蓋了多個技術(shù)和方法,包括機器學(xué)習(xí)。它旨在使計算機能夠表現(xiàn)出智能行為,如理解自然語言、識別圖像、解決問題等。人工智能可以包括基于規(guī)則的專家系統(tǒng)、進化算法、知識表示和推理等。

  機器學(xué)習(xí)是人工智能的一個具體方法,通過讓計算機利用數(shù)據(jù)來學(xué)習(xí)模式、生成預(yù)測模型或者進行決策。它依賴于統(tǒng)計學(xué)和算法來發(fā)現(xiàn)數(shù)據(jù)中的模式,并利用這些模式進行預(yù)測和決策。機器學(xué)習(xí)可以分為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強化學(xué)習(xí)等不同類型。

  下面是一個簡單的Python代碼演示,展示了如何使用機器學(xué)習(xí)庫scikit-learn進行監(jiān)督學(xué)習(xí)的示例:

# 導(dǎo)入必要的庫
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm

# 加載數(shù)據(jù)集
iris = datasets.load_iris()
X = iris.data  # 特征
y = iris.target  # 標簽

# 劃分數(shù)據(jù)集為訓(xùn)練集和測試集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

# 創(chuàng)建支持向量機分類器
clf = svm.SVC()

# 在訓(xùn)練集上訓(xùn)練模型
clf.fit(X_train, y_train)

# 在測試集上進行預(yù)測
y_pred = clf.predict(X_test)

# 輸出預(yù)測結(jié)果
print("預(yù)測結(jié)果:", y_pred)

  這段代碼使用了鳶尾花(iris)數(shù)據(jù)集,將其分為訓(xùn)練集和測試集,然后使用支持向量機(SVM)算法進行訓(xùn)練和預(yù)測。最后打印出預(yù)測結(jié)果。這個示例展示了監(jiān)督學(xué)習(xí)中的一個簡單示例,其中機器學(xué)習(xí)用于訓(xùn)練模型并進行預(yù)測。

分享到:
在線咨詢 我要報名
和我們在線交談!